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Abstract

A direct solver method is developed for solving Poisson's equation

numerically for the electrostatic potential �(r; z) in a cylindrical region

(r<Rwall; 0<z< L). The method assumes the charge density �(r; z)

and wall potential �(r=Rwall; z) are speci�ed, and @�=@z = 0 at the

axial boundaries (z = 0; L).
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Many calculations in plasma physics require a rapid solution of Poisson's

equation

r2� = �4��; (1)

where � is the electrostatic potential, and � is the charge density. This

paper was motivated by the need to determine the potential variation in an

axisymmetricMalmberg-Penning trap con�ning a pure electron plasma [1{3].

Hughes [4] has previously described a direct solver for Poisson's equation in

cylindrical (r; z) coordinates, but the potentials on axis (r=0) and at some

radius r = r0 must be known. Often, the axial potential is not known a

priori. Trunec [5] has also developed a direct Poisson solver in cylindrically

symmetric geometry without requiring knowledge of the axial potential. Both

Hughes and Trunec utilize a Fourier transform in the axial direction, but

Trunec approximates the radial solution using the basis functions for cubic

splines, while Hughes �nds a radial solution using only the �nite-di�erence

form of the radial di�erential equation. Trunec's approach allows for unequal

grid spacing in the radial direction, but the benchmarking results suggest

that the spline approximation introduces more error than Hughes' method

of solving the �nite-di�erence equations directly. The purpose of this Note

is to extend Hughes' solver so that it does not require knowledge of the axial

potential.

For @=@� = 0; Poisson's equation in cylindrical (r; z) coordinates is

@2�

@r2
+
1

r

@�

@r
+

@2�

@z2
= �4��; (2)
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where � is the electrostatic potential, and � is the known charge density. The

potential is assumed to be speci�ed at radius r = Rwall, and @�=@z = 0 at

the axial boundaries (z = 0; L). The latter assumption is appropriate for the

applications of interest, but can easily be modi�ed to describe the case where

� = 0 at the axial boundaries or the case of periodic boundary conditions by

using a sine or Fourier transform instead of a cosine transform.

We begin the analysis by applying a discrete cosine transform in the

axial (ẑ) direction to Poisson's equation. The cosine transform uses cosines

only to form a complete set of basis functions in the interval from 0 to

2�, and guarantees that the solution will have zero derivative at the axial

boundaries [6]. The cosine transform is de�ned by

Fk =
N�1X
j=0

fj cos
�k(j + 1

2
)

N
; (3)

with inverse

fj =
2

N

N�1X0

k=0

Fk cos
�k(j + 1

2
)

N
: (4)

Here, the prime on the summation symbol means that the k = 0 term has a

coe�cient of 1

2
multiplying (2=N)F0.

We consider the (r; z) plane covered by a uniform mesh with constant

spacing �r and �z in the r and z directions:

z = (i+
1

2
) ��z; i = 0; 1; :::; NZ � 1;

r = j ��r; j = 0; 1; :::; NR; (5)
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where �z =
L

N
Z

and �r =
R
wall

N
R

. The cosine transform can be written as

�(r; z) =
2

NZ

N
Z
�1X0

k=0

~�k(r) cos
�kz

�zNZ

: (6)

Substituting Eq. (6) into Poisson's equation (2) yields

@2 ~�k

@r2
+
1

r

@ ~�k

@r
�

1

�2
z

 
�k

NZ

!2

~�k = �4�~�k: (7)

where � has been similarly transformed.

The next step is to write these equations in �nite-di�erence form. Away

from the axis (j � 1), Eq. (7) becomes

~�k;j+1 � 2~�k;j + ~�k;j�1
�2

r

+
~�k;j+1 � ~�k;j�1

2j�2
r

�
1

�2
z

 
�k

NZ

!2

~�k;j = �4�~�k;j (j � 1):

(8)

Collecting terms yields

~�k;j

2
42 + �2

r

�2
z

 
�k

NZ

!2
3
5� ~�k;j�1

 
1 �

1

2j

!
� ~�k;j+1

 
1 +

1

2j

!
= 4��2

r ~�k;j:

(9)
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De�ning

Sk;j = 4��2
r ~�k;j;

�k = 2 +
�2

r

�2
z

 
�k

NZ

!2

;

�j = 1 +
1

2j
;


j = 1 �
1

2j
; (10)

we can rewrite Eq. (9) as

�
j ~�k;j�1 + �k ~�k;j � �j ~�k;j+1 = Sk;j: (11)

Equation (11) corresponds to the set of equations

2
66666666664

�
1 �k ��1 0 � � �

0 �
2 �k ��2 � � �

� � �

� � � �
N
R
�1 �k ��N

R
�1

3
77777777775
�

2
666666666666664

~�k;0

~�k;1
...

~�k;N
R
�1

~�k;N
R

3
777777777777775

=

2
66666666664

Sk;1

Sk;2

...

Sk;N
R
�1

3
77777777775

(12)

where it appears that there are NR�1 equations and NR+1 unknowns. How-

ever, we have assumed that the potential is speci�ed at the radial boundary
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so that ~�k;N
R
is known. The set of equations is then

2
666666666666664

�
1 �k ��1 0 � � �

0 �
2 �k ��2 � � �

� � �

� � � �
N
R
�2 �k ��N

R
�2

� � � 0 �
N
R
�1 �k

3
777777777777775

�

2
66666666664

~�k;0

~�k;1

...

~�k;N
R
�1

3
77777777775

=

2
66666666664

Sk;1

Sk;2

...

Sk;N
R
�1 + �N

R
�1
~�k;N

R

3
77777777775
(13)

We could similarly assume that the potential on axis, ~�k;0, is speci�ed and

we would have a set of NR � 1 equations and NR � 1 unknowns.

Instead, we will �nd an additional equation utilizing the symmetry on

axis. To proceed, a �nite-di�erence form of Poisson's equation is required

that is valid for j = 0. To �nd such an expression, we take the limit of Eq.

(7) (the cosine-transformed Poisson's equation in di�erential form) as r! 0,

i.e.,

lim
r!0

8<
:@2~�k

@r2
+
1

r

@ ~�k

@r
�

1

�2
z

 
�k

NZ

!2

~�k = �4�~�k

9=
; : (14)

The second term can be expressed di�erently in this limit. Using L'Hospital's
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rule, we �nd

lim
r!0

@�

@r

r
=

@2�

@r2
: (15)

Thus, in the limit as r ! 0, the cosine-transformed Poisson's equation be-

comes

2
@2 ~�k

@r2
�

1

�2
z

 
�k

NZ

!2

~�k = �4�~�k: (16)

The �nite-di�erence form of Eq. (16) is

2
~�k;+1 � 2~�k;0 + ~�k;�1

�2
r

�
1

�2
z

 
�k

NZ

!2

~�k;0 = �4�~�k;0; (17)

where j = 0 has been substituted since we will use this equation only on axis.

Next, utilizing the axial boundary condition @�=@rj
r=0

= 0, we �nd that

~�k;�1 = ~�k;+1. This result might have been anticipated simply by noting the

assumed azimuthal symmetry in the problem. To show that the boundary

condition also implies this result, recall that a three-point �nite-di�erence

approximation for a derivative is [7]

@f

@x

�����
x=x0

=
1

2�
[f(x0 +�)� f(x0 ��)]: (18)

The �nite di�erence form for the axial boundary conditions used here is

therefore

@ ~�k

@r

�����
r=0

= [~�k;+1 � ~�k;�1]=(2�r) = 0;
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or

~�k;+1 = ~�k;�1: (19)

Substituting Eq. (19) into Eq. (17) yields

4
~�k;+1 � ~�k;0

�2
r

�
1

�2
z

 
�k

NZ

!2

~�k;0 = �4�~�k;0 ;

which can be expressed as

(2 + �k)~�k;0 � 4~�k;1 = Sk;0: (20)

The complete set of equations then becomes

2
666666666666664

2 + �k �4 0 � � �

�
1 �k ��1 � � �

� � �

� � � �
N
R
�2 �k ��N

R
�2

� � � 0 �
N
R
�1 �k

3
777777777777775

�

2
666666666666664

~�k;0

~�k;1
...

~�k;N
R
�2

~�k;N
R
�1

3
777777777777775

=

2
666666666666664

Sk;0

Sk;1

...

Sk;N
R
�2

Sk;N
R
�1 + �N

R
�1
~�k;N

R

3
777777777777775

(21)

This tridiagonal system of NR equations in NR unknowns can be quickly
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solved in O(NR) operations and the solution can be encoded very concisely

[6]. This process is repeated for each wavenumber k, and �nally the inverse

cosine transform is used to �nd the potential �(r; z).

A Poisson solver based on Eq. (21) has been written and benchmarked

against a few analytically solvable cases. The �rst case is that of constant

charge density � from r = 0 to r = Rwall(1 � �), 0 < � � 1, and constant

wall potential �j
R
wall

at r = Rwall. The analytic solution (in MKS units) is

�(r) = �j
R
wall

+
�

4�0
(R2

wall � r2): (22)

We choose the potential at the wall, �j
R
wall

= 0, the charge density � =

1 Coulomb=m3, and the wall radius, Rwall = 0:01 m. Substituting into Eq.

(22) gives

�(r) = 2:824 � 1010(10�4 � r2) V olts: (23)

Figure 1 shows a plot of the potential calculated directly from Eq. (23) and

a plot of the di�erence between the potential calculated using the Poisson

solver and by using Eq. (23). Thirty-two radial grid points were used for the

Poisson solver.

The second case is that of a vacuum potential (zero charge density) with a

sinusoidal wall potential V0 cos(2�z=L). The analytical solution to Poisson's

equation is

�(r; z) =
V0

I0(2�Rwall=L)
cos(2�z=L)I0(2�r=L); (24)
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where I0(x) is the modi�ed Bessel function of order zero. Figure 2(a) shows

an r�z plot of Eq. (24) with V0 = 1V;Rwall = 0:02m and L = 0:08m. Figure

2(b) shows the di�erence between the analytic solution and the solution found

from the Poisson solver using 32 radial and 32 axial grid points.

The maximum error in the potential is found to decrease initially as the

square of the number of radial grid points used. This is likely due to the error

involved in the �nite-di�erence approximation of the derivatives. The �rst

and second derivatives both have errors that are dependent on the square of

the grid spacing, i.e.,

f 0(x0) =
1

2�
[f(x0 +�)� f(x0 ��)]�

�2

6
f (3)(�);

f 00(x0) =
1

�2
[f(x0 ��)� 2f(x0) + f(x0 +�)]�

�2

12
f (4)(�);

(25)

for some � in the interval x0�� < � < x0+� [7]. However, the error in the

potential eventually reaches a minimum and begins to increase with increas-

ing number of grid points (decreasing grid spacing �) because of round-o�

error.

In conclusion, the direct solver developed here is a fast and straight-

forward approach to solving Poisson's equation in cylindrically symmetric

geometry given only the potential variation at some radius, �(r=Rwall; z),

and the charge density distribution, �(r; z).
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Figure 1: Figure 1(a) shows a plot of �(r) obtained from Eq. (23). Figure
1(b) shows the di�erence between the potential calculated using the Poisson

solver and by using Eq. (23) normalized to the theoretical potential at r = 0.
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Figure 2: Figure 2(a) shows a plot of �(r; z) in Eq. (24) with V0 = 1V;Rwall =

0:02m and L = 0:08m. Figure 2(b) shows the di�erence between the poten-

tial calculated using the Poisson solver and by using Eq. (24).
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